Libmonster ID: BY-400
Author(s) of the publication: YAROSLAV RENKAS

Scientists of the RAS Institute of Machine Science named after A. Blagonravov together with their colleagues from other research institutions of this land have created world's unique micrometer sensor for installation in critical locations prone to emergencies to ward off catastrophes unparalleled in scale and aftermath.

As shown by our recent past, in particular, there is no avoiding technogenic calamities either on land (Chernobyl catastrophe*, railway explosion near Ufa), or on sea (submarines sinking in the Barents Sea) or in space (launch pad accidents)**. To address the problem Russia has adopted the State Technogenic Catastrophe Preventive Research Program-STCPRP "Safety". According to the RAS Corresponding Member Nikolai Makhutov, its gist is as follows.

People are delving deeper and deeper into natural environment, and technology is getting increasingly complex at a mind-boggling pace, thus creating a continuously growing yet inevitable gap between the potential hazards it creates and our capacity of avoiding them. That does not mean, however, that technogenic disasters are to be treated as the judgment of God. No doubt, there is no way to foresee anything under the sun and an absolute safety is practically unattainable. Still, we are to be prepared for all kinds of breakages, accidents, etc. With that purpose, even in the design phase machines and equipment should be applied most drastic requirements, and standard risks are to be put down in their normative technical documents. That should be a law to be abode by designers and engineers.

Moreover, when potentially hazardous technology is manufactured, e.g., space-rocket or nuclear installations, it is not sufficient if the innovation just has high performance factor or low materials consumption. Developers must foresee even hypothetical accident probability and be prepared to eliminate or mitigate the risks***.

Nowadays, due to scientific progress, the feasibility of urgently preventing emergency situations has grown hundred- if not thousandfold. However, the ideal situation is still too remote, when practically simultaneously with accident occurrence a safety system would go off.


See: V. Subbotin, "Nuclear Power: From the Past into the Future", Science in Russia, No. 6, 1996. -Ed.

** See: Yu. Markov, "Baikonur: Joy with a Smack of Gall", Science in Russia, Nos. 3 - 5, 1998. -Ed.

*** See: V. Subbotin, "Nuclear Power Safety", Science in Russia, No. 1, 1999. -Ed.

Pages. 10


There may be multiple causes of a disaster, and they may practically take fractions of a second. To learn foreseeing, projecting, identifying and instantly eliminating those is a most complex task which is not always attainable at present yet. However, while we are unable to completely avoid critical situations, we can substantially reduce their incidence and negative effects.

It is common knowledge, the scientist goes on, that many dynamic processes in machines in transit from standard to emergency situations follow roughly the same pattern. That allows us to identify them and quickly, practically instantaneously, respond to alarm signals and take corrective measures. Take, for instance, a rocket turbine rotor rotating at an enormous speed of a few tens of thousands of rounds per minute. Even a miniscule destruction of a turbine blade-a tiny fragment detached-may cause a lot of harm. We have already learnt to avoid such occurrences: we have sensors which register the emergency situation. Thus, in 27 cases out of 30 the turbine was stalled in time.

Together with colleagues from other institutes our specialists work on the problem of the so-called controlled catastrophes to prevent those or minimize the risk. The respective systems will alert you to what is to be done (e.g., change the design of an NPP reactor). If an accident is still to occur it will take not seconds but at least a few hours to develop. In that case the personnel will have time to analyze the situation and to act.

We also look for different techniques of protecting people working in hazardous areas. Thus, we have created metallized fabric screening off electromagnetic radiation. Some of its types have higher electrical resistivity. An operator (astronaut) clothed in a suit (pressure suit) made of this fabric can stand even hypothermia.

Many sectors today make use of shape memory metals. A coupling made with such technology, should there happen a fire, will under the impact of high temperature somewhat increase in size tightly sealing a hole and preventing the spilling of dangerous liquids or gas.

Or let us take another and unfortunately typical situation. When buildings collapse concrete slabs often pile up and are pressed so tightly against one another that no tool can be inserted in-between, e.g., a lifting jack or a hydraulic booster. Rather the narrow rift can accommodate a

Pages. 11


finger-thick piece. When heated up, it "grows" and creates an effort of tens of tons capable of moving the concrete blocks apart.

Finally, perhaps the most perspective of the above designs is a micrometer sensor, i.e., a tenso-, thermo-, vibration sensor, created in our institute. The invention is the implementation of scientists' and engineers' age-old dream: for the first time they got a real chance to obtain reliable information from the focus of accidents as they are developing. The unique instruments operate right in the reactor fissile core, in the thermonuclear plant superconductor systems, on steam turbine rotors, within chemical production lines- in the flows of liquid metal, gas, plasma, in corrosive environment, i.e., in the extreme conditions of radiation, super-high and super-low temperatures and electromagnetic fields.

Sealed in a pressurized foil body, sensors look like a web of wires a few millimeters long and micron-thick, connected with spot welding. Their data are fed to the tensometric center and processed on-line with the help of up-to-date computer programs. Based on that, the center generates a conclusion whether the operation mode of, e.g., a reactor (and that includes, perhaps, thousands of parameters) meets safety requirements, i.e., it outputs information for decision-making and not necessarily in current perspective. It is not only possible to adjust the operation mode of a functioning installation but to make alterations in the design of newly created equipment. Specialists may even compromise efficiency and economy for higher reliability. Thus unit five of the Kozlodui NPP in Bulgaria was equipped with a thousand sensors up to 2 thousand dollars worth each.

It is already half-a-century now that our institute has been involved in the creation of safety technologies, but whatever effective and even unique offered solutions are, they continuously need improvement to keep in pace with the machines and equipment fleet. Therefore, we are networking with specialists of many sectors: metallurgists make new materials for us, software engineers design more and more intricate programs, others develop most sophisticated systems of pulse holography, thermovision, acoustic emission, strain-sensitive coatings facilitating identification of critical areas in certain technological devices. On our laboratory samples we test various extreme mechanical, thermal, electromagnetic, aerohydrodynamic impacts and find precise parameters of resistance to emergency loads. Only together, Dr. Makhutov stresses, shall we ensure the safety of present-day and future technology.

Izvestiya, 2004

Prepared by Yaroslav RENKAS


© biblioteka.by

Permanent link to this publication:

https://biblioteka.by/m/articles/view/WARDING-OFF-TECHNOGENIC-DISASTER

Similar publications: LBelarus LWorld Y G


Publisher:

Беларусь АнлайнContacts and other materials (articles, photo, files etc)

Author's official page at Libmonster: https://biblioteka.by/Libmonster

Find other author's materials at: Libmonster (all the World)GoogleYandex

Permanent link for scientific papers (for citations):

YAROSLAV RENKAS, WARDING OFF TECHNOGENIC DISASTER // Minsk: Belarusian Electronic Library (BIBLIOTEKA.BY). Updated: 02.10.2018. URL: https://biblioteka.by/m/articles/view/WARDING-OFF-TECHNOGENIC-DISASTER (date of access: 10.10.2024).

Publication author(s) - YAROSLAV RENKAS:

YAROSLAV RENKAS → other publications, search: Libmonster BelarusLibmonster WorldGoogleYandex

Comments:



Reviews of professional authors
Order by: 
Per page: 
 
  • There are no comments yet
Related topics
Publisher
Беларусь Анлайн
Минск, Belarus
834 views rating
02.10.2018 (2200 days ago)
0 subscribers
Rating
0 votes
Related Articles
Узнайте, куда правильно подавать иск о правах на недвижимое имущество и какие органы и суды занимаются рассмотрением таких дел, чтобы защитить свои интересы и получить справедливое решение.
Catalog: Право 
4 days ago · From Беларусь Анлайн
  Основным свойством нейтральной зоны постоянного магнита является наличие направленной силы движения (магнитное самодвижение)с выраженным притяжением, по отношению к любому основному полюсу другого магнита. При движении магнитного поля нейтральной зоны параллельно оси намагниченности постоянного магнита вдоль плоскости проводящего контура - Возникает электрический ток.
Catalog: Физика 
5 days ago · From Andrei Verner
The main property of the neutral zone of a permanent magnet is the presence of a directional force of motion (magnetic self-motion) with a pronounced attraction, in relation to any main pole of another magnet. When the magnetic field of the neutral zone moves parallel to the magnetization axis of the permanent magnet along the plane of the conducting circuit - an electric current arises.
Catalog: Физика 
5 days ago · From Andrei Verner
Воздействие магнитного поля нейтральной зоны - Возникновение электрического тока в проводящем контуре, движущемся в магнитном поле нейтральной зоны.
Catalog: Физика 
5 days ago · From Andrei Verner
Properties of the magnetic field of the permanent magnet the neutral zone is the presence of force directed motion (self-motion magnetic) with a strong attraction towards any main pole of the other magnet (magnetized ferromagnetic primary pole permanent magnet).
Catalog: Физика 
5 days ago · From Andrei Verner
Воздействие магнитного поля нейтральной зоны - Возникновение электрического тока в проводящем контуре, движущемся в магнитном поле нейтральной зоны.
Catalog: Физика 
5 days ago · From Andrei Verner
Суммы прогрессий: 1,2,3,4,5..., -1,-2,-3,-4,-5... Можно найти с помощью формулы:Sn= (n²a₁+n)/2. Суммы прогрессий: 1,3,6,10,15..., -1,-3,-6,-10,-15... Можно найти с помощью формулы:Sn= ((n+a₁)³-(n+a₁))/6. Суммы прогрессий: 1,4,9,16,25..., -1,-4,-9,-16,-25... Можно найти с помощью формулы:Sn= a₁(n+a₁)(n²a₁+0.5n)/3. (где n - количество суммируемых членов, a₁ -первый член прогрессии).
5 days ago · From Andrei Verner
Progress Sums: 1,2,3,4,5..., -1,-2,-3,-4,-5... It can be found using the formula: Sn=(n²a₁+n)/2. Progress Sum: 1,3,6,10,15..., -1,-3,-6,-10,-15... It can be found using the formula: Sn= ((n+a₁)³-(n+a₁))/6. Progress Sum: 1,4,9,16,25..., -1,-4,-9,-16,-25... It can be found using the formula: Sn= a₁(n+a₁)(n²a₁+0.5n)/3. (Where n - is the number of summable terms, a₁ - is the first term of the progression).
5 days ago · From Andrei Verner
Столкновение газовых молекул-источник энергии. Собираем простой гальванический элемент (аналог всем известной батарейки). В раствор NaCl поместим два электрода с разностью потенциалов. При фиксированной нагрузки внешней цепи разрядим элемент. Не размыкая внешнюю цепь, накроем гальванический элемент стеклянной колбой. В смеси атмосферного воздуха, находящегося под колбой, повысим процентное содержание углекислого газа в несколько раз, путем введения углекислого газа под колбу. Зафиксируем восстановление заряда элемента.
Catalog: Физика 
5 days ago · From Andrei Verner
Collision of gas molecules is the source of energy. We assemble a simple galvanic cell (analogous to the well-known battery). We place two electrodes with a potential difference in a NaCl solution. With a fixed load of the external circuit, we discharge the cell. Without breaking the external circuit, we cover the galvanic cell with a glass flask. In the mixture of atmospheric air located under the flask, we increase the percentage of carbon dioxide several times by introducing carbon dioxide under the flask. We record the restoration of the cell charge.
Catalog: Физика 
5 days ago · From Andrei Verner

New publications:

Popular with readers:

News from other countries:

BIBLIOTEKA.BY - Belarusian digital library, repository, and archive

Create your author's collection of articles, books, author's works, biographies, photographic documents, files. Save forever your author's legacy in digital form. Click here to register as an author.
Library Partners

WARDING OFF TECHNOGENIC DISASTER
 

Editorial Contacts
Chat for Authors: BY LIVE: We are in social networks:

About · News · For Advertisers

Biblioteka.by - Belarusian digital library, repository, and archive ® All rights reserved.
2006-2024, BIBLIOTEKA.BY is a part of Libmonster, international library network (open map)
Keeping the heritage of Belarus


LIBMONSTER NETWORK ONE WORLD - ONE LIBRARY

US-Great Britain Sweden Serbia
Russia Belarus Ukraine Kazakhstan Moldova Tajikistan Estonia Russia-2 Belarus-2

Create and store your author's collection at Libmonster: articles, books, studies. Libmonster will spread your heritage all over the world (through a network of affiliates, partner libraries, search engines, social networks). You will be able to share a link to your profile with colleagues, students, readers and other interested parties, in order to acquaint them with your copyright heritage. Once you register, you have more than 100 tools at your disposal to build your own author collection. It's free: it was, it is, and it always will be.

Download app for Android